
Journal of Computational Physics 228 (2009) 7863–7882
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Nodal discontinuous Galerkin methods on graphics processors

A. Klöckner a,*, T. Warburton b, J. Bridge b, J.S. Hesthaven a

a Division of Applied Mathematics, Brown University, Providence, RI 02912, United States
b Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 17 December 2008
Received in revised form 3 June 2009
Accepted 26 June 2009
Available online 14 July 2009

Keywords:
Discontinuous Galerkin
High order
GPU
Parallel computation
Many-core
Maxwell’s equations
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.06.041

* Corresponding author. Tel.: +1 401 648 0599.
E-mail addresses: kloeckner@dam.brown.edu (A

(J.S. Hesthaven).
Discontinuous Galerkin (DG) methods for the numerical solution of partial differential
equations have enjoyed considerable success because they are both flexible and robust:
They allow arbitrary unstructured geometries and easy control of accuracy without com-
promising simulation stability. Lately, another property of DG has been growing in impor-
tance: The majority of a DG operator is applied in an element-local way, with weak
penalty-based element-to-element coupling.

The resulting locality in memory access is one of the factors that enables DG to run on
off-the-shelf, massively parallel graphics processors (GPUs). In addition, DG’s high-order
nature lets it require fewer data points per represented wavelength and hence fewer mem-
ory accesses, in exchange for higher arithmetic intensity. Both of these factors work signif-
icantly in favor of a GPU implementation of DG.

Using a single US$400 Nvidia GTX 280 GPU, we accelerate a solver for Maxwell’s equa-
tions on a general 3D unstructured grid by a factor of around 50 relative to a serial compu-
tation on a current-generation CPU. In many cases, our algorithms exhibit full use of the
device’s available memory bandwidth. Example computations achieve and surpass
200 gigaflops/s of net application-level floating point work.

In this article, we describe and derive the techniques used to reach this level of perfor-
mance. In addition, we present comprehensive data on the accuracy and runtime behavior
of the method.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Discontinuous Galerkin methods [19,4,11] are, at first glance, a rather curious combination of ideas from Finite-Volume
and Spectral Element methods. Up close, they are very much high-order methods by design. But instead of perpetuating the
order increase like conventional global methods, at a certain level of detail, they switch over to a decomposition into com-
putational elements and couple these elements using Finite-Volume-like surface Riemann solvers. This hybrid, dual-layer
design allows DG to combine advantages from both of its ancestors. But it adds a third advantage: By adding a movable
boundary between its two halves, it gives implementers an added degree of flexibility when bringing it onto computing
hardware.

A momentous change in the world of computing is now opening an opportunity to exploit this flexibility even further.
Previously, the execution time of a given code could be determined simply by counting how many floating point operations
it executes. More recently, memory bottlenecks, in the form of bandwidth limitation and fetch latency, have taken over as
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the dominant factors, and CPU manufacturers use large amounts of silicon to mitigate this effect. It is quite instructive and
somewhat depressing to compare the chip area used for caches, prediction, and speculation in recent CPUs to the area taken
up by the actual functional units. The picture is changing, however, and graphics processors, having recently turned into gen-
eral-purpose programmable units, were the first to do away with expensive caches and combat latency by massive parallel-
ism instead. In this article, we explore how and with what benefit DG can be brought onto GPUs.

Two main questions arise in this endeavor: First, how shall the computational work be partitioned? In a distributed-
memory setting, the answer is quite naturally domain decomposition. For the shared-memory parallelism of a GPU, there
are several possibilities, and there is often no single answer that works well in all settings. Second, DG implementations
on serial processors often rely heavily on the availability of off-the-shelf, pre-tuned linear algebra and communication prim-
itives. These aids are either unavailable or unsuitable on a GPU platform, and in stark contrast to the relatively straightfor-
ward implementation of DG on serial machines, optimal use of graphics hardware for DG presents the implementer with a
staggering number of choices. We will describe these choices as well as a generative approach that exploits them to adapt
the method to both the problem and the hardware at run time.

Using graphics processors for computational tasks is by no means a new idea. In fact, even in the days of marginally pro-
grammable fixed-function hardware, some (especially particle-based) methods obtained large speedups from running on
early GPUs. (e.g. [16]) In the domain of solvers for partial differential equations, Finite-Difference Time-Domain (FDTD)
methods are a natural fit to graphics processors and obtained speedups of about an order of magnitude with relative ease
(e.g., [15]). Finite Element solvers were also brought onto GPUs relatively early on (e.g., [7]), but often failed to reach the
same impressive speed gains observed for the simpler FD methods. In the last few years, high-level abstractions such as
Brook and Brook for GPUs [2] have enabled more and more complex computations on streaming hardware. Building on this
work, Barth and Knight [1] already predicted promising performance for two-dimensional DG on a simulation of the Stanford
Merrimac streaming architecture [6]. Nowadays, compute abstractions are becoming less encumbered by their graphics her-
itage [17,18]. This has helped bring algorithms of even higher complexity onto the GPU (e.g. [9]). Taking advantage of these
recent advances, this paper presents, to the best of our knowledge, one of the first general finite element based solvers that
achieves more than an order of magnitude of speedup on a single real-world consumer graphics processor when compared
to a CPU implementation of the same method.

A sizable part of this speedup is owed to our use of high-order approximations. High-order methods require more work
per degree of freedom than low-order methods. This increased arithmetic intensity shifts the method from being limited by
memory bandwidth towards being limited by compute bandwidth. The relative abundance of cheap computing power on a
GPU makes high-order methods especially beneficial there.

In this article, we will discuss the numerical solution of linear hyperbolic systems of conservation laws using DG methods
on the GPU. Important examples of this class of partial differential equations (PDEs) include the second-order wave equation,
Maxwell’s equations, and many relationships in acoustics and linear elasticity. Certain nontrivial adjustments to the discon-
tinuous Galerkin method become necessary when treating nonlinear problems (see, e.g., [11, Chapter 5]). We leave a detailed
investigation of the solution of nonlinear systems of conservation laws using DG on a GPU for a future publication, where we
will also examine the benefit of GPU-DG for different classes of PDEs, such as elliptic and parabolic problems.

We will further focus on tetrahedra as the basic discretization element for a number of reasons. First, it is undisputed that
three-dimensional calculations are in many cases both more practically relevant and more plagued by performance worries
than their lower-dimensional counterparts. Second, they have the most mature meshing machinery available of all com-
monly used element shapes. And third, when compared with tensor product elements, tetrahedral DG is both more arith-
metically intense and requires fewer memory fetches. Overall, it is conceivable that tetrahedral DG will benefit more
from being carried out on a GPU.

This article describes the mapping of DG methods onto the Nvidia CUDA programming model. Hardware implementa-
tions of CUDA are available in the form of consumer graphics cards as well as specialized compute hardware. In addition,
the CUDA model has been mapped onto multicore CPUs with good success [21]. Rather than claim an artificial generality,
we will describe our approach firmly in the context of this model of computation. While that makes this work vendor-spe-
cific, we believe that most of the ideas presented herein can be reused either identically or with mild modifications to adapt
the method to other, related architectures. The emerging OpenCL industry standard [8] specifies a model of parallel compu-
tation that is a very close relative of CUDA, promising broad applicability of the methods presented herein. It should be
noted, however, that OpenCL can be used with a multitude of device types whose suitability for DG in general and our meth-
ods in particular will of course vary.

The paper is organized as follows: We give a brief overview of the theory and serial implementation of DG in Section 2.
The CUDA programming model is described in Section 3. Section 4 explains the basic design choices behind our approach,
while Section 5 gives detailed implementation advice and pseudocode. Section 6 characterizes our computational results in
terms of speed and accuracy. Finally, in Section 7 we conclude with a few remarks and ideas for future work.

2. Overview of the discontinuous Galerkin method

We are looking to approximate the solution of a hyperbolic system of conservation laws
ut þr � FðuÞ ¼ 0 ð1Þ
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on a domain X ¼
UK

k¼1Dk � Rd consisting of disjoint, face-conforming tetrahedra Dk with boundary conditions
ujCi
ðx; tÞ ¼ giðuðx; tÞ; x; tÞ; i ¼ 1; . . . ; b;
at inflow boundaries
U

Ci # @X. As stated, we will assume the flux function F to be linear. We find a weak form of (1) on each
element Dk:
0 ¼
Z

Dk

utuþ ½r � FðuÞ�udx ¼
Z

Dk

utu� FðuÞ � rudxþ
Z
@Dk

ðn̂ � FÞ�udSx;
where u is a test function, and ðn̂ � FÞ� is a suitably chosen numerical flux in the unit normal direction n̂. Following [11], we
find a strong-DG form of this system as
0 ¼
Z

Dk

utuþ ½r � FðuÞ�udx�
Z
@Dk

½n̂ � F � ðn̂ � FÞ��udSx: ð2Þ
We seek to find a numerical vector solution uk :¼ uNjDk
from the space Pn

NðDkÞ of local polynomials of maximum total degree
N on each element. We choose the scalar test function u 2 PNðDkÞ from the same space and represent both by expansion in a
basis of Np :¼ dimPNðDkÞ Lagrange polynomials li with respect to a set of interpolation nodes [23]. We define the mass, stiff-
ness, differentiation, and face mass matrices
Mk
ij :¼

Z
Dk

lilj dx; ð3aÞ

Sk;@m
ij :¼

Z
Dk

li@xm lj dx; ð3bÞ

Dk;@m :¼ ðMkÞ�1Sk;@m; ð3cÞ

Mk;A
ij :¼

Z
A�@Dk

lilj dSx: ð3dÞ
Using these matrices, we rewrite (2) as
0 ¼ Mk@tuk þ
X

m
Sk;@m ½FðukÞ� �

X
F�@Dk

Mk;A½n̂ � F � ðn̂ � FÞ��;

@tuk ¼ �
X

m
Dk;@m ½FðukÞ� þ Lk½n̂ � F � ðn̂ � FÞ��jA�@Dk

:
ð4Þ
The matrix Lk used in (4) deserves a little more explanation. It acts on vectors of the shape ½ukjA1
; . . . ;ukjA4

�T , where ukjAi
is the

vector of facial degrees of freedom on face i. For these vectors, Lk combines the effect of applying each face’s mass matrix,
embedding the resulting facial values back into a volume vector, and applying the inverse volume mass matrix. Since it ‘‘lifts”
facial contributions to volume contributions, it is called the lifting matrix. Its construction is shown in Fig. 1.

It deserves explicit mention at this point that the left multiplication by the inverse of the mass matrix that yields the ex-
plicit semidiscrete scheme (4) is an elementwise operation and therefore feasible without global communication. This
strongly distinguishes DG from other finite element methods. It enables the use of explicit (e.g., Runge–Kutta) timestepping
and greatly simplifies our efforts of bringing DG onto the GPU.

2.1. Implementing DG

DG decomposes very naturally into four stages, as visualized in Fig. 2. This clean decomposition of tasks stems from the
fact that the discrete DG operator (4) has two additive terms, one involving an element volume integral, the other an element
surface integral. The surface integral term then decomposes further into a ‘gather’ stage that computes the term
n̂ � F u�N
� �

� ðn̂ � FÞ� u�N ;u
þ
N

� �� ���
A�@Dk

; ð5Þ
and a subsequent lifting stage. The notation u�N indicates the value of uN on the face A of element Dk, uþN the value of uN on the
face opposite to A.
Fig. 1. Construction of the lifting matrix Lk .



Fig. 2. Decomposition of a DG operator into subtasks. Element-local operations are highlighted with a bold outline.
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As is apparent from our use of a Lagrange basis, we implement a nodal version of DG, in which the stored degrees of free-
dom (‘‘DOFs”) represent the values of uN at a set of interpolation nodes. This representation allows us to find the facial values
used in (5) by picking the facial nodes from the volume field. (This contrasts with a modal implementation in which DOFs
represent expansion coefficients. Finding the facial information to compute (5) requires a different approach in these
schemes.)

Observe that most of DG’s stages are element-local in the sense that they do not use information from neighboring ele-
ments. Moreover, these local operations are often efficiently represented by a dense matrix–vector multiplication on each
element.

It is worth noting that since simplicial elements only require affine transformations Wk from reference to global element,
the global matrices can easily be expressed in terms of reference matrices that are the same for each element, combined with
scaling or linear combination, for example
1 ‘‘Ki
2 ‘‘Ba

address
memor
Mk
ij ¼ det

dWk

dr

����
����|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Jk :¼

Z
I

lilj dx|fflfflfflfflffl{zfflfflfflfflffl}
Mij :¼

; ð6aÞ

Sk;@m
ij ¼ Jk

X
l

@Wm

@rl

Z
I

li@rl lj dx|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
S@l

ij
:¼

; ð6bÞ
where I ¼ W�1
k ðDkÞ is a reference element. We define the remaining reference matrices D, MA, and L in an analogous fashion.

3. The CUDA parallel computation model

Graphics hardware is aimed at the real-time rendering of large numbers of textured geometric primitives, with varying
amounts of per-pixel and per-primitive processing. This problem is, for the most part, embarrassingly parallel and exhibits
this parallelism at both the pixel and the primitive level. It is therefore not surprising that the parallelism delivered by graph-
ics-derived computation hardware also exhibits two levels of parallelism. On the Nvidia hardware [17] targeted in this work,
up to 30 independent, parallel multiprocessors form the higher level. Each of these multiprocessors is capable of maintaining
several hundred threads in flight at any given time, giving rise to the lower level.

One such multiprocessor consists of eight functional units controlled by a single instruction decode unit. Each of the func-
tional units, in turn, is capable of executing one basic single-precision floating point or integer operation per clock cycle.
Interestingly, a fused floating point multiply–add is one of these basic operations. The instruction decode unit feeding the
eight functional units is capable of issuing one instruction every four clock cycles, and therefore the smallest scheduling unit
on this hardware is what Nvidia calls a warp, a set of T :¼ 32 threads. The architecture is distinguished from conventional
single-instruction-multiple-data (SIMD) hardware by allowing threads within a warp to take different branches, although
in this case each branch is executed in sequence. To emphasize the difference, Nvidia calls Tesla a single-instruction-multi-
ple-thread (SIMT) architecture.

Up to 16 of these warps are now aggregated into a thread block and sent to execute on a single multiprocessor. Threads in
a block share a piece of execution hardware, and are hence able to take advantage of additional communication facilities
present in a multiprocessor, namely, a memory fence that may optionally serve as a barrier, and 16 KiB1 of banked2 shared
memory. The shared memory has 16 banks, such that half a warp accesses shared memory simultaneously. If all 16 threads
access different banks, or if all 16 access the same memory location (a broadcast), the access proceeds at full speed. Otherwise,
the whole warp waits as maximal subsets of non-conflicting accesses are carried out sequentially.

A potentially very large number of thread blocks is then aggregated into a grid and forms the unit in which the control-
ling host processor submits work to the GPU. There is no guaranteed ordering between thread blocks in a grid, and no
B” stands for Kilobyte binary or Kibibyte and represents 1024 ¼ 210 bytes [5].
nking” is one technique of designing memory for parallel access. It refers to a partitioning into banks, in which each such bank receives its own
ing logic and data bus. As a result, only addresses in distinct banks can be accessed simultaneously. Banking is a typical feature of parallel on-chip
y.
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communication is allowed between them. Only after successful completion of a grid submission, the work of all thread
blocks is guaranteed to be visible. In that sense, grid submission serves as a synchronization point.

Indices within a thread block and within a grid are available to the program at run time and are permitted to be multi-
dimensional to avoid expensive integer divisions. We will refer to these indices by the symbols tx; ty; tz, and bx; by.

All threads have read–write access to the GPU’s on-board (‘global’) memory. A single access to this off-chip memory has a
latency of several hundred clock cycles. To hide this latency, a multiprocessor will schedule other warps if available and
ready. A few things influence how many threads are available: Each thread requires a number of registers. Also, the work
of a group of threads often involves a certain amount of shared memory. More threads may therefore also consume more
shared memory. Since both the register file and the amount of shared memory is finite, their use may lead to artificial limits
on the number of threads in a block. If there are very few threads in a block and there is not space for many blocks on the
same multiprocessor, the device may fail to find warps it can run while waiting for memory transactions. This decreases glo-
bal memory bandwidth utilization. Another aspect influencing the available bandwith to global memory is the pattern in
which access occurs. Taking 32-bit accesses as an example, loads and stores to global memory achieve the highest bandwidth
if, within a warp, thread i accesses memory location bþ pðiÞ, where b is a 16-aligned base address and p is a mapping obey-
ing bpðiÞ=16c ¼ bi=16c. Note that for global fetches only, these restrictions can be alleviated somewhat through the use of
texture units.

A final bit of perspective: While the graphics card achieves an order of magnitude larger bandwith to its global memory
than a conventional processor does to its main memory, its floating point capacity eclipses this already large bandwidth by
yet another order of magnitude. If we visualize both compute and memory bandwidth as physical ‘‘pipes” with a certain
diameter, the challenge in designing algorithms for this architecture lies in keeping each pipe flowing at capacity while using
a minimum of buffer space.
4. DG on the GPU: design

The answers to three questions emerge as the central design decisions in mapping a numerical method into an algorithm
that can run on a GPU:

Computation Layout. How can the task be decomposed into a grid of thread blocks, given there cannot be any inter-block
communication? Do we need a sequence of grids instead of a single grid?
Data Layout. How well does the data conform to the device’s alignment requirements? Where and to what extent will
padding be used?
Fetch Schedule. When will what piece of the data be fetched from global into on-chip memory, i.e. registers or shared
memory?

Note that the computation layout and the data layout are often the same, and rarely independent. For the bandwidth rea-
sons described in Section 3, the index of the thread computing a certain result should match the index where that result is
stored. Post-computation permutations come at the cost of setting aside shared memory to perform the permutation. It is
therefore common to see algorithms designed around the principle of one-thread-per-output. The fetch schedule, lastly,
determines how often data can be reused before it is evicted from on-chip storage.

Unstructured discontinuous Galerkin methods have a number of natural granularities:

� the number Np of DOFs per element,
� the number Nfp of DOFs per face,
� the number Nf of faces per element,
� the number n of unknowns in the system of conservation laws.

The number of elements K also influences the work partition, but it is less important in the present discussion.
The first three granularities above depend on the chosen order of approximation as well as the shape of the reference ele-

ment. Fig. 3(a) gives a few examples of their values. Perhaps the first problem that needs to be addressed is that many of the
DOF counts, especially at the practically relevant orders of 3 and 4, conform quite poorly to the hardware’s preference for
batches of 16 and 32. A simple solution is to round the size of each element up to the next alignment boundary. This leads
to a large amount of wasted memory. More severely, it also leads to a large amount of wasted processing power, assuming a
one-thread-per-output design. For example, rounding Np for a fourth-order element up to the next warp size boundary
ðT ¼ 32Þ leads to 45% of the available processing power being wasted. It is thus natural to aggregate a number of elements
to get closer to an alignment boundary. Now, each of the parts of a DG operator is likely to have its own preferred granularity
corresponding to one thread block. One option is to impose one such part’s granularity on the whole method. We find that a
better compromise is to introduce a sub-block granularity for this purpose. We aggregate the smallest number KM of ele-
ments to achieve less than 5% waste when padding up to the next multiple NpM of T=2 ¼ 16. Fig. 3(b) illustrates the principle.
We then impose the restriction that each thread block work on an integer number of these microblocks. We assign the symbol
nM :¼ dK=KMe to the total number of microblocks.



Fig. 3. Matching DG granularities to GPU alignment boundaries.

7868 A. Klöckner et al. / Journal of Computational Physics 228 (2009) 7863–7882
The next question to be answered involves decomposing a task into an appropriate set of thread blocks. This decompo-
sition is problem-dependent, but a few things can be said in general. We assume a task that has to be performed in parallel,
independently, on a number of work units, and that requires some measure of preparation before actual work units can be
processed. We are trying to find the right amount of work to be done by a single thread block. We may let the block complete
work units in parallel, alongside each other in a single thread (‘inline’ for brevity), or sequentially. We will use the symbols
wp; wi and ws for the number of work units processed in each way by one thread block. Thus the total number of work units
processed by one thread block is wpwiws. A large wp may improve speed through increased parallelism and reuse of data in
shared memory, but typically also requires additional shared memory buffer space. Increasing wi gains speed through reuse
of data in registers. Take, for example, a two-operand procedure like matrix multiplication. Here, increasing wi allows a sin-
gle thread to use data from the first operand, once loaded into registers, to process more than one column of the second oper-
and. Like wp, varying wi also influences buffer space requirements. ws, finally, amortizes preparation work over a certain
number of work units, at the expense of making the computation more granular. Achieving a balance between these aspects
is not generally straightforward, as Fig. 10(b) will demonstrate. Note that each of the methods discussed below will have its
own values for wp; wi, and ws.

We noted above that the number n of variables in the system of conservation laws (1) also introduces a granularity. In
some cases, it may be advantageous to allow this system size to play a role in deciding data and computation layouts.
One might attempt do this by choosing a packed field layout, i.e. by storing all field values at one node in n consecutive mem-
ory locations. However, a packed field layout is not desirable for a number of reasons, the most significant of which is that it
is unsuited to a one-thread-per-output computation. If thread 0 computes the first field component, thread 1 the second, and
so on, then each field component is found by evaluating a different expression, and hence by different code. This cannot be
efficiently implemented on SIMT hardware. One could also propose to take advantage of the granularity n by letting one
thread compute all n different expressions in the conservation law for one node. It is practical to exploit this for the gathering
of the fluxes and the evaluation of FðuÞ. For the more complicated lifting and differentiation stages on the other hand, this
leads to impractical amounts of register pressure. We find that, especially at moderate orders, the extra flexibility afforded by
ignoring n outweighs any advantage gained by heeding it. If desired, one can always choose KM ¼ n or wi ¼ n to closely emu-
late the strategies above. Further, note that for the linear case discussed here, one has significant freedom in the ordering of
operations, for example by commuting the evaluation of FðukÞ with local differentiation.

A final question in the overall algorithm design is whether it is appropriate to split the DG operator into the subtasks indi-
cated in Fig. 2, rather than to use a single or only two grids to compute the whole operator. Field data would need to be
fetched only once, leading to a good amount of data reuse. But at least for the scarce amounts of shared memory buffer space
in current-generation hardware, this view is too simplistic. Each individual subtask tends to have a better, individual use for
on-chip memory. Also, it is tempting to combine the gather and lift stages, since one works on the immediate output of the
other. Observe however that there is a mismatch in output sizes between the two. For each element, the gather outputs NfpNf

values, while the lift outputs Np. These two numbers differ, and therefore the optimal computation layouts for both kernels
also differ. While it is possible to use the larger of the two computation layouts and just idle the overlap for the other com-
putation, this is sub-optimal. We find that the added fetch cost is easily amortized by using an optimal computation layout
for each part of the flux treatment.

5. DG on the GPU: implementation

5.1. How to read this section

To facilitate a detailed, yet concise look at our implementation techniques, this section supplements its discussion with
pseudocode for some particularly important subroutines. Pseudocode contains all the implementation details and exposes



Table 1
Typographical conventions for different types of GPU storage.

Convention Storage type

v Italic font Constant or unrolled loop variable
v Typewriter font Register variable
vS Superscript S Variable in shared memory
vG Superscript G Variable in global memory
vT Superscript T Variable bound to a texture
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the basic control and synchronization structure at a single glance. In addition to the code, there is text discussing every
important design decision reflected in the code.

To maximize readability, we rely on a number of notational conventions. First, dxen is the smallest integer larger than x
divisible by n. Next, ½a; bi denotes the ‘half-open’ set of integers fa; . . . ; b� 1g. Using this notation, we may indicate ‘vector-
ized’ statements, e.g. an assignment a½k;kþni  k½0;ni. The loops indicated by these statements are always fully unrolled in ac-
tual code. Depending on notational convenience, we alternate between subscript notation ai and indexing notation a½i�. Both
are to be taken as equivalent. Sometimes, we use both sub- and superscripts on a variable. This helps brevity and readability,
but is only done if the memory layout of the corresponding variable is clarified elsewhere. Otherwise, for multi-dimensional
indices, C-like (row-major) data layout is assumed.

Lastly, the GPU offers many different types of storage. To avoid confusion, we assign each type of storage a separate typo-
graphical convention, as outlined in Table 1. If and only if two storage locations of different types are used for related data,
we use the same letter for both.

5.2. Flux lifting

Lifting is one of the element-local components of a discontinuous Galerkin operator, and, for simplicial elements, is effi-
ciently represented by a matrix–matrix multiplication as in Fig. 4(a), followed by an elementwise scaling.

The first, tempting approach to implementing this is to take advantage of the vendor-provided GPU-based BLAS work-
alike. This is hampered by sub-optimal performance and strict alignment requirements. As a result, a custom algorithm is
in order.

One key to high performance on the GPU is to find a good use for the scarce amount of shared memory. Both operands in
an element-local matrix multiplication see large amounts of reuse: Each field value is used Np times, and each entry of a local
matrix is used Np times for each element. It is therefore a sensible wish to load both operands into shared memory. For the
tetrahedral elements targeted here, this is problematic. Even for elements of modest order, the matrix data quickly becomes
too large. This restricts the applicability of a matrix-in-shared approach to low orders, and we will therefore first examine the
more broadly applicable method of using the shared memory for field data. Still, matrix-in-shared does provide a benefit for
certain low orders and is examined in the context of element-local differentiation in Section 5.4.

We choose a one-thread-per-output design for flux lifting. This dictates that computation and output layouts match
Fig. 3(b). But the input layout for lifting is mildly different: The flux gather, which provides the input to lifting, extracts
Nf Nfp DOFs per element. Recall that the layout of Fig. 3(b) provides Np DOFs per element. Since typically Np – Nf Nfp, we intro-
duce a mildly different layout as shown in Fig. 4(b), using the same number KM of elements as found in a mircroblock, pad-
ded to half-warp granularity. This padding is likely somewhat more wasteful than the carefully tuned one of Fig. 3(b).
Fortunately, this is irrelevant: We will not be using Fig. 4(b) as a computation layout, and data in this format is used only
for short-lived intermediate results. Overall, the resulting memory layout has NfM :¼ dNf NfpKMeT=2 DOFs per microblock.

We are now ready to discuss the actual algorithm, at the start of which we need to fetch field data into shared memory.
Because we chose a one-thread-per-output computation layout, we will have Np threads per element fetching data. Due to
the mismatch between Np and Nf Nfp, we may require multiple fetch cycles to fetch all data. In addition, the last such fetch
cycle must involve a length check to avoid overfetching. It is important to unroll this fetch loop and to use some care with the
ending conditional to still allow fetch pipelining3 to occur.

With the field data in shared memory, the matrix data is fetched using texture units. By way of the texture cache, we hope
to take advantage of the significant redundancy in these fetches. The matrix texture should use column-major order: Realize
that within a block, a large number of threads, each assigned to a row of the matrix, load values from each column in turn.
Column-major order gives the most locality to this access pattern.

With this preparation, the actual matrix–matrix product can be performed. Since all threads within one element load each
of the element’s nodal values from shared memory in order, these accesses are handled as a broadcast and therefore conflict-
free. Conflicts do occur, however, if a half-warp straddles an element boundary within a microblock. In that case, threads
3 Pipelining is a fetch optimization strategy. It performs high-latency fetches in batches ahead of a computation. Since a warp only stalls when unavailable
data is actually used in a computation, this allows a single thread to wait for multiple memory transactions simultaneously, decreasing latency and reducing
the need for parallel occucpancy. The Nvidia compiler automatically pipelines fetches if the code structure allows it.
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before and after the element boundary access different elements, and therefore a double-broadcast bank conflict occurs.
Fig. 5(a) shows the genesis of this conflict. Fortunately, that does not automatically mean that microblocking is a bad idea.
It turns out that the performance lost when using no microblocking and hence full padding is about the same as the one lost
to these bank conflicts. Even better: there is a way of mitigating the conflicts’ impact without having to forgo the performance
benefits of microblocking. The key realization is that even if only one half of a warp encounters a conflict, the other half of the
warp is made to wait, too, regardless of whether it conflicted. Conversely, if we assemble warps in such a way that conflict-
prone and non-conflict-prone half-warps are kept separate, then we avoid unnecessary stalling. If wp > 1, then we can
achieve such a grouping by laying out the computation as seen in Fig. 5(b).

Algorithm 1 represents the aggregate of the techniques described in this section. Observe that since there is no prepara-
tion work, we set ws :¼ 1. We should stress at this point that both the field-in-shared and the matrix-in-shared approach can
be used for both lifting and element-local differentiation. Adapting the strategy of Algorithm 1 for the latter is quite
straightforward.

Algorithm 1. Flux Lifting, field-in-shared.

Require: A grid of dnM=wpwie � 1 blocks of size T=2�wp � NpM=ðT=2Þ.
Require: Inputs: L T, the reference element’s lifting matrix; iT, the per-element inverse Jacobians; fG, the surface fluxes in

the format of Fig. 4(b).

Ensure: Output: rG, the surface fluxes fG multiplied by the per-element lifting matrix Lk.
m ðbxwp þ tyÞwi {the base microblock number}
i ðT=2Þtz þ tx {this thread’s DOF number within its microblock}
{load data}
for all unrolled b 2 ½0; ddNfMeT=dNpMeTei do

if bNpM þ i < NfM then
fSty ;½0;wii;bNpMþi  fGðmþ½0;wiiÞdNfMeTþbNpMþi

——— Barrier+Memory Fence ———
{perform matrix multiply}
if i < KMNpM then

r½0;wii  0
for all unrolled n 2 ½0;Nf Nfpi do
r½0;wii  r½0;wii þ LT½imodNp;n�fSty ;½0;wii;n

rGðmþ½0;wiiÞNpMþi  iT½ðmþ ½0;wiiÞKM þ bi=Npc�r½0;wii
5.3. Flux extraction

In a strong-form, nodal implementation of the discontinuous Galerkin method, flux extraction or ‘gather’ iterates over the
node indices of each face in the mesh and evaluates the flux expression (5) at each such node. As such, it is a rather quick
operation characterized by few arithmetic operations and a very scattered fetch pattern. This non-local memory access pat-
tern is the most expensive aspect of flux extraction on a GPU, and our foremost goal should therefore be to minimize the
number of fetches at all costs. For linear conservation laws, we may with very little harm treat the element-local parts of
a DG operator as if they acted on scalar fields. This is however not true of the non-local flux extraction. Fetching all fields
only once and then computing all n fluxes saves a significant n2 � n fetches of each facial node value.
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The next potential savings comes from the fact that the fluxes on the two sides of an interior face pair use the same face
data. By computing fluxes for such face pairs together, we can cut the number of interior face fetches in half. Computing and
storing opposite fluxes together is of course only possible if the task decomposition assigns both to the same thread block.
We will therefore need to invest some care into this decomposition.

To help find the properties of the task decomposition, observe that by choosing to compute opposite fluxes together, we
are implicitly rejecting a one-thread-per-output design. To accommodate opposite faces’ fluxes being computed simulta-
neously, we will allow the gathered fluxes to be written into a shared memory buffer in random order in time, but conform-
ing to the output layout of Fig. 4(b). Once completed, this shared memory buffer will then be flushed to global memory in
one contiguous write operation. This limits our task decomposition choices: Thread blocks will output contiguous pieces of
data in the output layout. This means that the smallest granularity on which a thread block for flux extraction may begin
and end is that of a microblock: We will let each thread block compute fluxes on an integer number MB of microblocks.
Observe that this is not ideal: The natural task decomposition for flux extraction is by face pair, not by element, nor, even
worse, by a group of elements as large as a microblock. Nonetheless, given our output memory layout, this decomposition is
inevitable.

But all is not lost. By carefully controlling the assignment of elements to microblocks, and again by carefully choosing the
assignment of microblocks to flux extraction thread blocks, we can hope to recover many block-interior face pairs within a
thread block. Note the far-reaching consequences of what was just decided: We need to have the elements participating in a
flux-gather thread block sit adjacent to each other in the mesh. To achieve this, we partition the mesh into pieces of at most
KMMB elements each and then assign the elements in each piece to microblocks sequentially. This means nothing less than
letting our mesh numbering be decided by what is convenient for the gathering of fluxes.

What can we say about the required partition? It is important to realize that this is a fairly different domain decom-
position problem than the one for distributed-memory machines. First, there is a hard limit of KMMB elements per piece,
as determined by the amount of shared memory set aside for write buffering. Second, there is a (somewhat softer) limit
on the number of block-external faces. This limit stems from the fact that information about the faces on which we gath-
er fluxes needs to be stored somewhere. Obviously, block-internal face pairs can share this information and therefore
require less storage – one descriptor for each two faces. Face pairs on a block boundary are less efficient. They require
one descriptor for each face. If the block size KMMB is relatively large, a bad, splintered partition may have too many
boundary faces and therefore exceed the ‘‘soft” limit on available space for face pair descriptors. Therefore, for large
blocks, we require a ‘good’ partition with as few block-exterior face pairs as possible. For very small blocks, on the other
hand, the problem is exactly opposite: If KMMB is small, the absolute quality of the mesh partition is not as critically
important: The small overall number of faces means that we will not run out of descriptor space, making the soft limit
even softer.

So, how can the needed partition be obtained? A natural first idea is to use conventional graph partitioning software (e.g.
[14]). Problematically, these packages tend to fail when partitioning very large meshes into very many small parts. In addi-
tion, our ‘soft’ and ‘hard’ limits are difficult to enforce in these packages, so that obtaining a conforming partition may take
several ‘attempts’ with increasing target partition sizes. Increased target partition sizes, in turn, mean that there are micro-
blocks where element slots go unassigned. This means that generic graph partitioners are not a universal answer. They work
well and generate good-quality partitions if KMMB ’ 10. Otherwise, we fall back on a simple greedy breadth-first agglomer-
ator designed to exactly meet the ‘hard’ limit. It picks elements by a total connectivity heuristic and is illustrated in Algo-
rithm 2. The greedy algorithm may produce a few very ‘bad’ scattered blocks with many external faces, but we have
found that they matter neither in performance, nor in keeping the ‘soft’ limit.
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Algorithm 2. Simple Greedy Partition.

Require: Input: set of elements E with connectivity C :¼ fðe1; e2Þ : e1 and e2 share a faceg.
Ensure: Output: the partition, a set of blocks P, each of size 6 l.

P  ;
while E – ; do

Q  {a seed element from E} (a queue of candidate elements)
B ; (the block currently being generated)
loop

Find and remove the element e 2 Q that shares the most faces with B.
if e 2 E then

Remove e from E, add it to B.
if jBj ¼ l then

Make first entry of Q the new seed element, break the loop.
Q  Q [ ff : ðe; f Þ 2 Cg

if Q ¼ ; then
if E ¼ ; then

Break the loop.
else

Add an arbitrary element from E to Q.
P  P [ fBg

Once the partition is constructed, we obtain for each block a number of elements whose faces fall into one of three cat-
egories: intra-block interior, inter-block interior, and boundary faces. We design our algorithm to walk an array of data struc-
tures describing face pairs, each of which falls into one of these categories. Within this array, each face pair structure
contains all information needed to gather and compute the fluxes for its target face(s). Descriptors for intra-block interior
face pairs drive the flux computation for two faces at once, while the other two kinds only drive the computation for one
face. The array is loaded from global into shared memory when each thread block begins its work. To minimize branching
and to save storage space in each descriptor, we make the kind of each face pair descriptor implicit in its position in the array.
To achieve this, we order the array by the face pair’s category and store how many face pairs of each category are contained
in the array.

Because we implement a nodal DG method, face index lists play an important role in the gather process: Each face’s nodal
values need to be extracted from a given volume field. Since a tetrahedron has four faces, there are four possible index sub-
sets at which each face’s DOFs are found, all of length Nfp. Knowing these index subsets enables us to find surface nodal val-
ues for one element. But we need to find corresponding nodal values on two opposite elements. Therefore, we may need to
permute the fetch ordering of one of the elements in a face pair. Altogether, to find opposing surface nodal values, we need to
store two index lists. Since the number of distinct index lists is finite, it is reasonable to remove each individual index list
from the face pair data structure and to instead refer to a global list of index lists. We find that a small texture provides a
suitable storage location for this list. Finally, note that intra-block face pairs require another index list: If we strive to con-
form to an assumed ‘natural’ face ordering of one ‘dominant’ face, writing the other’s data into the purely facial structure
from Fig. 4(b) requires a different index list than the one needed to read the element’s volume data.

Of all the parts of a DG operator, the flux gather stage is the one that is perhaps least suited to execution on a GPU. The
algorithm is data-driven and therefore branch-intensive, it accesses memory in an erratic way, and, as n grows, it tends to
require a fair bit of register space. It is encouraging to see that despite these issues, it is possible to design a method, given in
Algorithm 3, that performs respectably on current hardware.

Algorithm 3. Flux Extraction.

Require: a grid of dnM=MBe � 1 blocks of size Nfp �wp � 1.

Require: Inputs: ðuTÞ½0;ni, the set of fields of which fluxes are to be computed, each as a separate texture, dG, face information
records, JT, face index list array.

Ensure: Outputs: ðfGÞ½0;ni, the surface fluxes for each face of each element, as a sequence of scalar fields.
Load face information records from dG½bx� into the shared memory variable dS.
——— Barrier+Memory Fence ———
e ty {initialize the number of the face pair this thread is working on}
while e < # of interior face pairs in dS do
ði�;iþÞ  dS½e�:fetch base �;þ þ JT½dS½e�:fetch idx list nr �;þ; tx�
u
½0;ni
�;þ  ðuTÞ

½0;ni
i�;þ
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ðfSÞ½0;ni½dS½e�:store base � þ tx�
 dS½e�:face jacobian � ½n̂ � F � ðn̂ � FÞ��½0;ni u½0;ni� ;u

½0;ni
þ

� 	
ðfSÞ½0;ni½dS½e�:store base þ þ jT½dS½e�:store idx list nr þ; tx��
 dS½e�:face jacobian � ½ð�n̂Þ � F � ðð�n̂Þ � FÞ�� u½0;niþ ;u½0;ni�

� 	
e eþwp

while e < # of interior and exterior face pairs in dS do
ði�;iþÞ  dS½e�:fetch base �;þ þ JT½dS½e�:fetch idx list nr �;þ; tx�
u
½0;ni
�;þ  ðuTÞ

½0;ni
i�;þ

ðfSÞ½0;ni½dS½e�:store base � þ tx�
 dS½e�:face jacobian � ½n̂ � F � ðn̂ � FÞ�� u½0;ni� ;u

½0;ni
þ

� 	
e eþwp

while e < # of face pairs in dS do
i�  dS½e�:fetch base � þ JT dS½e�:fetch idx list nr �; tx½ �
u½0;ni�  ðuTÞ½0;nii�

u
½0;ni
þ  bðu½0;ni� ;dS½e�Þ {calculate boundary condition}

ðfSÞ½0;ni dS½e�:store base � þ tx½ �
 dS½e�:face jacobian � ½n̂ � F � ðn̂ � FÞ�� u½0;ni� ;u

½0;ni
þ

� 	
e eþwp

——— Barrier+Memory Fence ———

ðfGÞ½0;nibxMBNfMþ½0;MBNfMi
 ðfSÞ½0;ni½0;MBNfMi (not unrolled)
5.4. Element-local differentiation

Unlike lifting, element-local differentiation must be represented not as one matrix–matrix product (see Fig. 4(a)), but as
d ¼ 3 separate ones whose results are linearly combined to find the global x-, y- and z-derivatives. Each of the d differenti-
ation matrices has Np � Np entries and is applied to the same data. To maximize data reuse and minimize fetch traffic, it is
immediately apparent that all d matrix multiplications should be carried out ‘‘inline” along with each other.

Superficially, this makes differentiation look quite like a lift where we have chosen wi ¼ d. But there is one crucial differ-
ence: the three matrices used for differentiation are all different. Increasing wi drives data reuse in lifting simply by occu-
pying more registers. As we will see in Section 6, this suffices to make it go very fast. Differentiation on the other hand
already has a built-in ‘‘wi multiplier” of d and has to deal with different matrices. Both factors significantly increase register
pressure. Stated differently, this means that it is unlikely that we will be able to drive matrix data reuse by using more reg-
isters as we were able to do for lifting. But the matrix remains the most-reused bit of data in the algorithm. In this section, we
will therefore attempt to exploit this reuse by storing the matrix, not the field, in shared memory.

We have already discussed in Section 5.2 that the matrix-in-shared approach can only work for low orders because of the
rapid growth of the matrix data with N. At first, this seems like a problematic restriction that makes the approach less gen-
eral than it could be. It can however be turned into an advantage: Since we can assume that the algorithm runs at orders six
and below, we can exploit this fact in our design decisions.

We begin our discussion of this approach by figuring how the matrix data should be loaded into shared memory. As in
Section 5.2, we adopt a one-thread-per-output approach. A straightforward first attempt may be to load all d local differenti-
ation matrices into shared memory in their entirety. Then each thread computes a different row of the matrix–vector product,
and in doing so, thread number i accesses the ith row of the matrix. Without loss of generality, let the matrix be stored in
row-major order, so that thread i accesses memory cell number iNp. Shared memory has T=2 ¼ 16 distinct memory banks,
and therefore the access is conflict-free iff Np and 16 are relatively prime, or, more simply, iff Np is odd. This is encouraging:
We can achieve a conflict-free access pattern simply by adding a ‘padding’ column if necessary to enforce an odd stride S.
Fig. 7(a) shows the resulting assignment of matrix data to shared memory banks, and Fig. 7(b) illustrates the resulting
conflict-free access pattern.

Unfortunately, this is too simplistic. In the presence of microblocking, conflict-free access becomes more difficult. If a half-
warp straddles one or more element boundaries, bank conflicts are likely to result. The access not only has a stride S, but also
incorporates a jump from the end of the matrix to its beginning, a stride of ðNp � 1ÞS. And unlike in the previous case, we
cannot simply add a pad row to make the access conflict-free. Fig. 7(c) displays the problem.

One way to avoid the disastrous end-to-beginning jump and to maintain the conflict-free access pattern would be to
duplicate the matrix data from the first rows beyond the end of the matrix. This is workable in principle, but in practice
we are already filling the entire shared memory space with matrix data and are unlikely to be able to afford the added
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duplication. Fortunately, the duplication idea can be saved, and there exists a conflict-free matrix storage layout that does
not require us to abandon microblocking.

Departing from the idea that we will store the entire matrix, we aim at storing just a constant-size row-wise segment of
the matrix. Then, if the end of the matrix falls within a segment, we fill up the rest of the segment with rows from the begin-
ning, providing the necessary duplication for conflict-free access. For this layout, we consider a composite matrix made up of
NM vertically concatenated copies of the D@l. This composite matrix is then segmented into pieces of NR rows each, where NR

is chosen as a multiple of T=2. Each such matrix segment has a naturally corresponding range of degrees of freedom in a
microblock, and we limit the thread block that loads this matrix segment to computing outputs from this range. Fig. 6 illus-
trates the principle.

This computation layout makes the shared memory access conflict-free. Unfortunately, it also introduces a different, smal-
ler drawback: there now is fetch redundancy. A segment needs to fetch field data for each element ‘‘touched” by its rows. This
may lead it to fetch the same field values as the segment above and below it. Fig. 6 gives an indication of this fetch redundancy,
too. Fortunately, these duplicated accesses tend to happen in adjacent thread blocks and therefore possibly at the same time.
We speculate that the L2 texture cache in the device can help reduce the resulting increased bandwidth demand.

Next, observe that the matrix segments typically use less memory than the whole matrix. We can therefore reexamine
the assertion that loading both matrix and fields into shared memory is not viable. Unfortunately, while the space to do
so is now available, the field access bank conflicts from Section 5.2 spoil the idea.

One final observation is that for the typical choice of the reference element [11] the three differentiation matrices D@l are
all similar to each other by a permutation matrix. Using this fact could allow for significant storage savings, but in our exper-
iments, the added logic was too costly to make this trick worthwhile.

Algorithm 4 presents an overview of the techniques in this section. Instead of maintaining three separate local differen-
tiation matrices, it works with one matrix in which the D@l are horizontally concatenated and then segmented. Shared mem-
ory limitations allow this algorithm to work at order six and below.

Algorithm 4. Local Differentiation with a segmented matrix in shared memory.

Require: A grid of dNpM=NRe � dnM=ðwpwiwsÞe blocks of size NR �wp � 1.
Require: Inputs: uT, the field to be differentiated; rT, the local-to-global differentiation coefficients.
Ensure: Output: dGm , the local x; y; z-derivatives of uT.

Allocate the differentiation matrix segment DS 2 RNR�ðNpdÞ in shared memory.

Load rows ½bxNR; bxðNR þ 1ÞiðmodNpÞ of ½D@1; . . . ;D@d� into DS.
——— Barrier+Memory Fence ———
for all s 2 ½0;wsÞ do

m ððbyws þ sÞwp þ tyÞwi {this thread’s microblock number}
di

l  0 for l 2 f1; . . . ; dg and i 2 ½0;wii
for all unrolled n 2 ½0;Npi do

u½0;wii  uT½ðmþ ½0;wiiÞNpM þ n�
di

l  di
l þ DS½tx;lNp þ n�ui for l 2 f1; . . . ; dg and i 2 ½0;wii

ðdGÞmNpMþ½0;wiiNpMþtx

½0;di  
P

lðrTÞ
ðmþ½0;wiiÞKM

½0;didþl di
l

Fig. 6. Row-wise segmentation of a microblocked matrix–matrix product. Element boundaries are shown in black, segment boundaries in red. Also shown:
Fetch redundancy caused by segmentation. The second segment fetches field data from both the first and the second element because it overlaps rows from
both. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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6. Experimental results

In this section, we examine experimental results obtained from a DG solver for Maxwell’s equations in three dimensions
for linear, isotropic, and time-invariant materials. In terms of the electric field E, the magnetic field H, the charge density q,
the current density j, the permittivity �, and the permeability l, they read
�@tE�r� H ¼ �j; l@tH þr� E ¼ 0; ð7Þ
r � ð�EÞ ¼ q; r � ðlHÞ ¼ 0: ð8Þ
We absorb E and H into a single state vector
u :¼ ðE;HÞT ¼ ðEx; Ey; Ez;Hx;Hy;HzÞT :
If we define
FðuÞ :¼
0 �Ez Ey 0 Hz �Hy

Ez 0 �Ex �Hz 0 Hx

�Ey Ex 0 Hy �Hx 0

2
64

3
75

T

;
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Eq. (7) is equivalently expressed in conservation form as
Table 2
L2 error
of orde

K
N

1

2

3

4

5

6

7

8

9

� 0
0 l


 �
ut þr � FðuÞ ¼ 0:
If the two equations (8) are satisfied in the initial condition, Eqs. (7) ensure that this continues to be the case. Remarkably,
the same is also true of the DG discretization of the operator [10]. We may therefore assume a compliant initial condition and
omit (8) from our further discussion.

We label the numerical solution uN :¼ ðEN;HNÞT and choose the numerical flux F� to be the upwind flux from [10]:
n̂ � FN � F�N
� �

:¼ 1
2
fZg�1n̂� ðZþsHNt� n̂� sENtÞ
fYg�1n̂� ð�YþsENt� n̂� 